
Austin Neidert and Cam Wrabel
April 17, 2017
Ethernet Sample Application.pdf 1.0

Ethernet Sample Application with Sample Code

The purpose of this application is to demonstrate how to communicate with a Microcom
Model 485 printer using the Ethernet interface. Specific communication features
demonstrated here include communication preparation, sending information to the printer,
and receiving information from the printer. This document assumes that the Ethernet
interface is already selected on the printer as the communication interface being used. All
sample code that appears in this document is included in the Microsoft Visual Studio
485EthernetApp solution.

Step 1: Preparing Communication

Before data transfer between the host and the printer can occur, the communication
endpoints must be set up. More specifically, before writing to the printer, a TCP/IP socket is
required to know where to write data. Likewise, before reading from the printer, a TCP/IP
socket is required to know where to read from. In order to create a socket, the IP address
and the port number of the printer must be known a priori. The default IP address for the
Microcom Model 485 printer is 10.42.0.2 and the default port is 9100. In the sample
application, connection to the socket is made via an asynchronous call in a separate thread,
shown below. The IP address is passed in as an object so that the thread can be created
with parameters passed into it.

public​ ​void​ connect(​object​ ip)
{
 threadSafeSetConnectedToText(​"Connecting..."​);
 ​try
 {
 socket = ​new​ ​Socket​(​AddressFamily​.InterNetwork, ​SocketType​.Stream, ​ProtocolType​.Tcp);
 socket.Connect(ip.ToString(), 9100);
 }
 ​catch​ (​Exception​ ex) { }
}

Step 2: Sending to the Printer

Once the socket is created and connected, data can be sent to the printer. This can be
done using the ​socket.Send​ function. ​Socket.Send​ can be called in-line with code as well
as resulting from a button press. In the sample application, sending is done as follows:

try
{
 ​if​ (socket.Connected)
 socket.Send(fileBytes);
}
catch​ (​Exception​ ex)
{
 threadSafeSetConnectedToText(​"Connected To: None, Send Failed"​);
 ​try
 {
 socket.Close();
 }
 ​catch​ (​Exception​ closeEx) { }
}

In the sample code above ​fileBytes​ is a byte array. Because this app uses the

TCP/IP Ethernet interface, this byte array can be any size. Sending these bytes should
succeed as long as there is a valid connection on the socket.
Step 3: Receiving from the Printer

All receiving done in the Ethernet sample app is done asynchronously, thus a separate
thread is used to continuously read. This ensures that data will be read as soon as it is
available. The function used to read data from the socket is ​socket.Receive​. This function
returns the number of bytes read and a byte array is passed in by reference to store the data
read. If there is data to be read but less data to be read than the full byte array, it will read the
available data into the beginning of the array and the rest of the array will be 0. In the sample
code a byte array of size 4096 is passed in. The size is made larger than any expected
receive call would return. This is so that if there is ever data available, it will not take more
than one read call to read all of the data. This is to decrease overhead that would come with
multiple read calls. If there is no data to be read this call will hang until there is data to be
read. This is the reason to call ​socket.Receive​ in a separate thread. The read thread entry
is shown below.

while​ (socket.Connected)
{
 ​byte​[] receiveBuffer = ​new​ ​byte​[4096];
 ​int​ bytesRead = 0;
 ​try
 {
 bytesRead = socket.Receive(receiveBuffer);
 }
 ​catch​ (​SocketException​ ex)
 {
 threadSafeSetConnectedToText(​"Connected To: None, Connection Reset"​);
 }
 ​if​ (bytesRead > 0)
 {
 ​string​ receivedStr = ​""​;
 ​for​ (​int​ i = 0; i < receiveBuffer.Length; i++)
 receivedStr += (​char​)receiveBuffer[i];
 threadSafeAddConsoleText(receivedStr + ​Environment​.NewLine);
 }
}

This can only be done after the socket has a valid connection. If the socket connection
is closed, any currently hanging or future calls to ​socket.Receive​ will fail. After that point
the while loop condition will be checked and the entire thread will exit.

