
Austin Neidert and Cam Wrabel
April 17, 2017
USB HID Sample Application.pdf 1.0

USB HID Sample Application with Sample Code

The purpose of this application is to demonstrate how to communicate with a Microcom
Model 485 printer using the USB HID interface. Specific communication features
demonstrated here include communication preparation, sending information to the printer,
and receiving information from the printer. This document assumes that the USB HID
interface is already selected on the printer as the active communication interface being used.
All sample code that appears in this document is included in the Microsoft Visual Studio
485HIDApp solution.

Step 1: Preparing Communication

Before data transfer between the host and the printer can occur, the communication
endpoints must be set up. More specifically, before writing to the printer, a “write handle” is
required to know where to write data. Likewise, before reading from the printer, a “read
handle” is required to know where to read from.

The first step in preparing communication is to determine which of the currently available USB
HID devices the desired device is. In order to do this the list of devices must be iterated over.
An individual device in the list can be referenced using an integer ​i​ as an index passed into
the ​SetupDiEnumDeviceInterfaces​ function. To retrieve more information about a specific
device – such as the device path - the ​SetupDiGetDeviceInterfaceDetail​ function is
used. After retrieving the device path, a handle is gotten using the ​CreateFile​ function.
This handle can later be used as the write handle (used to write to the printer).

This handle can also be used to get the product name, manufacturer and serial number
belonging to the device by calling ​HidD_GetManufacturerString​,
HidD_GetProductString​, and ​HidD_GetSerialNumberString​ functions respectively. In
this case, the manufacturer is “Microcom”, the product is “485”, and the serial number is a
string up to 12 characters in length. After these properties are retrieved, ​CreateFile​ may be
called again to get a second handle which will be used as the read handle (to read from the
printer). In the sample application this all happens in a for loop within the ​refreshPrinters
function. This function looks like the following:

public​ ​void​ refreshPrinters()
{
 hidDevicesDropDown.Items.Clear();
 ​Guid​ guid = ​new​ ​Guid​();
 HidD_GetHidGuid(​ref​ guid);
 ​IntPtr​ devInfoPtr = SetupDiGetClassDevs(​ref​ guid, ​IntPtr​.Zero, ​IntPtr​.Zero, 0x12);
 ​int​ devInfoInt = (​int​)​Marshal​.PtrToStructure(devInfoPtr, ​typeof​(​int​));
 securityAttributes.securityDescriptor = 0;
 securityAttributes.inheritHandle = System.​Convert​.ToInt32(​true​);
 securityAttributes.length = ​Marshal​.SizeOf(securityAttributes);
 ​SP_DEVICE_INTERFACE_DATA​ deviceInterfaceData = ​new​ ​SP_DEVICE_INTERFACE_DATA​();
 deviceInterfaceData.size = ​Marshal​.SizeOf(deviceInterfaceData);
 ​for​ (​uint​ i = 0; SetupDiEnumDeviceInterfaces(devInfoPtr, ​IntPtr​.Zero, ​ref​ guid, i, ​ref​ deviceInterfaceData);
i++)
 {

 ​SP_DEVICE_INTERFACE_DETAIL_DATA​ spDeviceInterfaceDetailData = ​new​ ​SP_DEVICE_INTERFACE_DETAIL_DATA​();
 ​uint​ requiredSize = 0;
 SetupDiGetDeviceInterfaceDetail(devInfoPtr, ​ref​ deviceInterfaceData, ​IntPtr​.Zero, 0, ​ref​ requiredSize,
IntPtr​.Zero);
 ​uint​ size = requiredSize;
 ​if​ (​IntPtr​.Size == 8) ​// for 64 bit operating systems
 spDeviceInterfaceDetailData.cbSize = 8;
 ​else
 spDeviceInterfaceDetailData.cbSize = 4 + ​Marshal​.SystemDefaultCharSize; ​// for 32 bit systems
 ​IntPtr​ detailDataPtr = ​Marshal​.AllocHGlobal(​Marshal​.SizeOf(spDeviceInterfaceDetailData));
 ​Marshal​.StructureToPtr(spDeviceInterfaceDetailData, detailDataPtr, ​false​);
 SetupDiGetDeviceInterfaceDetail(devInfoPtr, ​ref​ deviceInterfaceData, detailDataPtr, size, ​ref
requiredSize, ​IntPtr​.Zero);
 spDeviceInterfaceDetailData = (​SP_DEVICE_INTERFACE_DETAIL_DATA​)​Marshal​.PtrToStructure(detailDataPtr,
typeof​(​SP_DEVICE_INTERFACE_DETAIL_DATA​));
 ​string​ devicePath = spDeviceInterfaceDetailData.DevicePath;
 ​int​ handle = CreateFile(devicePath, 0xC0000000​/*read and write*/​, 0x3​/*file share read and write*/​, 0,
3​/*open existing*/​, 0, 0);​//although this is specifying read and write this creates the first handle which will
be used for writing
 ​IntPtr​ buffer = ​Marshal​.AllocHGlobal(100);
 HidD_GetSerialNumberString(handle, buffer, 100);
 ​string​ serialNumberString = ​Marshal​.PtrToStringAuto(buffer);
 buffer = ​Marshal​.AllocHGlobal(100);
 HidD_GetProductString(handle, buffer, 100);
 ​string​ productString = ​Marshal​.PtrToStringAuto(buffer);
 buffer = ​Marshal​.AllocHGlobal(100);
 HidD_GetManufacturerString(handle, buffer, 100);
 ​string​ manufacturerString = ​Marshal​.PtrToStringAuto(buffer);
 ​int​ readHandle = CreateFile(devicePath, 0xC0000000​/*read and write*/​, 0x3​/*file share read and write*/​,
0, 3​/*open existing*/​, 0, 0);​//although this is specifying read and write this creates the second handle which
will be used for reading
 ​Device​ d = ​new​ ​Device​(devicePath, handle, readHandle, manufacturerString, productString,
serialNumberString);
 devices.Add(d);
 hidDevicesDropDown.Items.Add(d.manufacturer + ​" - "​ + d.product + ​" - "​ + d.serialNumber);
 ​if​ (devicePath.Contains(vid) && devicePath.Contains(pid))
 hidDevicesDropDown.SelectedIndex = (​int​)i;
 }
}

In the previous function all device paths, write handles, read handles, and feature strings are
stored in the Device class. The Device class is defined in the sample application as a means
to interact with the attached device. Once the correct device is known, the handles stored
within that device object can be referenced.

Step 2: Writing to the Printer

Writing to the printer can be done any time after the write handle is retrieved. Writing
to the handle is done using the ​WriteFile​ function. This can be done in-line with code as
well as resulting from a button press.

public​ ​void​ sendBytes(​byte​[] outputBuffer)
{
 ​int​ written = 0;
 ​byte​[] dataBuffer = ​new​ ​byte​[33];
 ​int​ repCount = (outputBuffer.Length / (dataBuffer.Length - 1)); ​// number of reports to send is total data
size/report size
 ​if​ ((outputBuffer.Length % (dataBuffer.Length - 1) != 0)) ​// there is some "extra" data that doesn't fill a
whole report
 repCount++; ​//add another report and pad it with zeros
 ​for​ (​int​ j = 0; j < repCount; j++) ​//loop through the reports to send
 {
 dataBuffer = ​new​ ​byte​[33];
 ​int​ outputOffset = j * 32;
 ​for​ (​int​ i = 1; i < dataBuffer.Length && outputOffset + i - 1 < outputBuffer.Length; i++) ​//fill dataBuf
with 32 values from outputBuffer then write

 dataBuffer[i] = outputBuffer[outputOffset + i - 1];
 WriteFile(currentDevice.handle, ​ref​ dataBuffer[0], dataBuffer.Length, ​ref​ written, 0);
 }
}

In the function above, all data that is sent must be split into 32 byte blocks. The
required size of the buffer depends on the report descriptor of the device; for the Microcom
485 printer the report size is 32. When sending to a USB HID device the first byte in the
buffer being sent is used as the “report number”. In the case of the Model 485, the report
number is unused. For this reason the starting value of i in the nested for loop is 1, leaving
the first byte in the buffer as 0 (the 0​th​ report). For many USB HID implementations, this
report number would be incremented for each report to preserve the order of reports as they
are received. In this case the Microcom 485 printer preserves order manually so the value of
the report number is irrelevant. In summary, when sending data to a Microcom 485 printer,
the buffer being sent should consist of an arbitrary one byte report number followed by 32
bytes of data.

Step 3: Reading from the Printer

Reading from a USB HID device shares many of the same properties as writing.
Reading from the handle is done using the ​ReadFile​ function. Like sending data, this
function uses a 33 byte buffer where the first byte is the report number, and the remaining 32
bytes are data. In the sample application, asynchronous I/O is used and thus all reading is
done in an entirely new thread. Each call to ​ReadFile​ is done within a while loop to allow
reading as soon as data is available. The entry to the read thread is shown ​below.

public​ ​void​ readThreadEntry()
{
 ​if​ (eventNum == 0)
 eventNum = CreateEvent(​ref​ securityAttributes, 1, 1, ​""​);
 HIDOverlapped.OffsetLow = 0;
 HIDOverlapped.OffsetHigh = 0;
 HIDOverlapped.EventHandle = (​IntPtr​)eventNum;
 ​int​ lastReadResult = 0;
 ​int​ readResult = 0;
 ​while​ (keepReading)
 {
 ​int​ read = 0;
 ​byte​[] buffer = ​new​ ​byte​[33];
 ​try
 {
 lastReadResult = readResult;
 ReadFile(currentDevice.readHandle, buffer, 33, ​ref​ read, ​ref​ HIDOverlapped);
 readResult = WaitForSingleObject(currentDevice.readHandle, 1000);
 ​if​ (readResult == 0)
 {
 ​string​ response = ​""​;
 ​for​ (​int​ i = 0; i < buffer.Length && i < read; i++)
 response += (​char​)buffer[i];
 ​if​ (response.Length > 0)
 {
 response = response.Replace(((​char​)0).ToString(), ​""​);
 threadSafeAddConsoleText(response);
 ​if​ (response[response.Length - 1] == (​char​)0)
 threadSafeAddConsoleText(​Environment​.NewLine);
 ​uint​ count = (​uint​)HIDOverlapped.InternalHigh;
 ​bool​ success = GetOverlappedResult(currentDevice.readHandle, ​ref​ HIDOverlapped, ​out​ count,
true​);
 }
 }

 ​else​ ​if​ (readResult == 0x102)
 CancelIo(currentDevice.readHandle);
 }
 ​catch​ (​ThreadAbortException​ tae) { }
 ​catch​ (​Exception​ ex) { }
 }
 keepReading = ​true​;​//for the next read thread
}

