
Austin Neidert and Cam Wrabel
April 17, 2017
USB Serial and RS-232 Serial Sample Application.pdf 1.0

USB Serial and RS-232 Serial Sample Application with Sample Code

The purpose of this application is to demonstrate how to communicate with a Microcom
Model 485 printer using either of the supported serial interfaces (USB Serial or RS-232
Serial). Specific communication features demonstrated here include communication
preparation, sending information to the printer, and receiving information from the printer.
This document assumes that the desired serial interface is already selected on the printer as
the communication interface being used. All sample code that appears in this document is
included in the Microsoft Visual Studio 485USBSerial solution.

Step 1: Preparing Communication

Before data transfer between the host and the printer can occur, the communication
endpoints must be set up. More specifically, before writing to the printer, a serial port is
required to know where to write data. Likewise, before reading from the printer, a serial port
is required to know where to read from. In order to create a serial port, the COM port that the
printer is associated with must be known. The available COM ports should be detected and
the list of COM ports should be populated upon opening the application. Detecting the
available COM ports can be done using ​SerialPort.GetPortNames​. The COM port to use
for the Microcom Model 485 printer will depend on which port it is connected to and is not
known by the application at runtime.

When connecting to a serial port, parameters must be specified so that the host machine and
the device can effectively communicate. These include baud rate, data parity, data bits, stop
bits, and flow control. The Microcom Model 485 printer requires these parameters must be
set to 115200, none, 8, 1, and CTS/RTS respectively. To connect to a serial port a
SerialPort​ object must be created, after which all of the aforementioned parameters can be
set within the ​SerialPort​ object. Once that step is complete, the serial port can be opened
with ​SerialPort.Open​. The sample code below demonstrates this procedure.

public​ ​bool​ Open()
{
 ​try
 {
 ​if​ (m_serialPort.IsOpen)
 {
 keepReading = ​false​;
 Close();
 readThread.Join();
 }
 m_serialPort.BaudRate = m_baudRate;
 m_serialPort.DataBits = m_dataBits;
 m_serialPort.Handshake = m_handshake;
 m_serialPort.Parity = m_parity;
 m_serialPort.PortName = m_portName;
 m_serialPort.StopBits = m_stopBits;
 ​//m_serialPort.DataReceived += new SerialDataReceivedEventHandler(m_serialPort_DataReceived);
 m_serialPort.Open();

 readThread = ​new​ ​Thread​(readThreadEntry);
 readThread.Start();

 }
 ​catch​ { ​return​ ​false​; }
 ​return​ ​true​;
}

Step 2: Writing to the Printer

Writing to the printer can be done any time after the serial port is open by using the
SerialPort.Write​ function. This can be done in-line with code as well as resulting from a
button press. The ​Write​ function can take in a string or a byte array of data to be sent. The
write procedure for the serial port sample application is shown below.

public​ ​bool​ WriteString(​string​ data)
{
 ​try
 {
 m_serialPort.Write(data);
 }
 ​catch​(​InvalidOperationException​ ioe)
 {
 ​Console​.WriteLine(​"A Invalid Operation exception occurred\n."​);
 ​return​ ​false​;
 }
 ​catch​(​ArgumentNullException​ ane)
 {
 ​Console​.WriteLine(​"A Argument Null exception occurred\n."​);
 ​return​ ​false​;
 }
 ​catch​(​TimeoutException​ toe)
 {
 ​Console​.WriteLine(​"A timeout exception occurred\n."​);
 ​return​ ​false​;
 }
 ​return​ ​true​;
}

public​ ​bool​ WriteBytes(​byte​[] byteArray)
{
 ​try
 {
 m_serialPort.Write(byteArray, 0, byteArray.Length);
 }
 ​catch​ (​InvalidOperationException​ ioe)
 {
 ​Console​.WriteLine(​"A Invalid Operation exception occurred\n."​);
 ​return​ ​false​;
 }
 ​catch​ (​ArgumentNullException​ ane)
 {
 ​Console​.WriteLine(​"A Argument Null exception occurred\n."​);
 ​return​ ​false​;
 }
 ​catch​ (​TimeoutException​ toe)
 {
 ​Console​.WriteLine(​"A timeout exception occurred\n."​);
 ​return​ ​false​;
 }
 ​return​ ​true​;
}

The data being sent can be of any length whether it be a string or a byte array. The
functions above return a boolean value indicating success or failure. This should succeed as
long as the serial port is open.

Step 3: Reading from the Printer

All receiving done in the serial sample app is done asynchronously, thus a separate
thread is used to continuously read. This ensures that data will be read as soon as it is
available. The function used to read data from the serial port is ​SerialPort.Receive​. This
function returns the number of bytes read and a byte array is passed in by reference to store
the data read. If there is no data to read, this call will hang until there is data to be read. This
is the reason to call ​SerialPort.Receive​ in a separate thread. The read thread entry is
shown below.

public​ ​void​ readThreadEntry()
{
 ​// initialize buffer to hold received data
 ​byte​[] buffer = ​new​ ​byte​[m_serialPort.ReadBufferSize];
 ​while​ (keepReading)
 {
 ​int​ bytesRead = 0;
 ​try
 {
 bytesRead = m_serialPort.Read(buffer, 0, buffer.Length);

 tString = ​Encoding​.ASCII.GetString(buffer, 0, bytesRead);
 asciiString = tString;
 asciiToHex(​ref​ hexString, asciiString);

 ​// UNUSED in this sample application, but included for the purpose of example
 ​//check if string contains terminating character
 ​if​ (tString.IndexOf((​char​)m_terminator) > -1)
 {
 ​//if tString does contain terminator, we cannot assume that it is the last char received
 ​string​ workingString = tString.Substring(0, tString.IndexOf((​char​)m_terminator));

 ​//remove the data up to the terminator from tString
 tString = tString.Substring(tString.IndexOf((​char​)m_terminator));

 ​Console​.WriteLine(workingString);
 }
 ​if​ (bytesRead > 0)
 form.threadSafeAddConsoleText(tString);
 }
 ​catch​ (​Exception​ ex)
 {
 ​if​ (bytesRead < 1)
 keepReading = ​false​;
 }
 }
 keepReading = ​true​;
}

